			1							
	RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)									
	B.A./B.Sc. SECOND SEMESTER (January – June) 2018									
	Mid-Semester Examination, March 2018									
Dat	Date : 14/03/2018 PHYSICS (Honours)									
Tim	e :	11 am – 1 pm Paper : II	Full Marks : 50							
		Answer any five questions taking at least one from each group	[5×10]							
		<u>Group – A</u>								
1.	a)	What do you mean by a basis of a vector space? Explain with example.	[3]							
b) If α, β, γ be a basis of a vector space in \mathbb{R}^3 , then show that $\alpha + \beta, \beta + \gamma, \gamma + \alpha$ is also a set of										
		in \mathbb{R}^3 , where \mathbb{R}^3 denotes the three dimensional real space.	[2]							
	c)	Show that $\delta_{ij} \in_{klm}$ is an isotropic tensor of rank 5.	[2]							
d) Prove the Lagrange's identity : $(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) = (\vec{A} \cdot \vec{C}) (\vec{B} \cdot \vec{D}) - (\vec{A} \cdot \vec{D}) (\vec{B} \cdot \vec{C})$ using ter										
		notation.	[3]							
-										
2.	a)	A linear operator A is defined by $Ai = j$, $Aj = k$ and $Ak = i$ where i, j and k are the unit v	vectors							
		of the Cartesian coordinates. Find the matrix representation of A.	[2]							
	b)	What are the eigenvalues and eigenvectors of A?	[1+3]							
	c)	What is the matrix representation of A in the basis $\hat{i}' = \frac{\hat{i} + \hat{j}}{\sqrt{2}}$, $\hat{j}' = \frac{\hat{i} - \hat{j}}{\sqrt{2}}$, $\hat{k}' = \hat{k}$.	[3]							
	d)	What is the transformation matrix S that takes one from the first Cartesian coordinate fra the primed one?	ame to [1]							
	<u>Group – B</u>									
3.	a)	Show that for a system of particles at rest the location of the centre-of-mass (CM) is indep	endent							
		of the choice of the origin of the reference frame.	[2]							
	b)	Consider a two-particle system rotating about an arbitrary but given axis through the CM angular velocity $\vec{\omega}$. Show that the angular momentum about the CM is, in general, not para	A with allel to							

c) Show that the kinetic energy (K.E.) of a many-particle system can be expressed as a sum of the K.E. of a fictitious particle at the CM and the K.E. of the system relative to the CM. [4]

[4]

[6]

 $\overline{\omega}$. For what choice of the axis are they parallel?

- 4. a) A vector $\vec{A}(t)$ of fixed magnitude rotates about a given axis with angular velocity $\vec{\omega}$. Show that the time rate of change of \vec{A} is given by $\frac{d\vec{A}}{dt} = \vec{\omega} \times \vec{A}$. [4]
 - b) Let S be a space-fixed Cartesian frame, and R a rotating frame having a common origin, O. The velocity of a moving particle with instantaneous position vector $\vec{r}(t)$ is $\vec{v}(t)$ as seen from S, and $\vec{u}(t)$ as seen from R. If R rotates with angular velocity $\vec{\omega}$ relative to S, show that $\vec{v} = \vec{u} + \vec{\omega} \times \vec{r}$ [use the result of 2(a)].

Group – C

5.	a)	What do you mean by proper length, proper time and an event? $[0.5+$	0.5+1]
	b)	Write down the Lorentz transformation equations and hence derive the equations of relativistic addition of velocities.	[1+4]
c) A particle of rest mass m ₀ is travelling so that its total energy is just twice the rest mass ener collides with a stationary particle of rest mass m ₀ to form a new particle. What is the rest m			
		the new particle?	[3]
6.	a)	Write down the two fundamental postulates of Special Theory of Relativity.	[1+1]
	b)	Derive the formula for relativistic variation of mass with velocity.	[5]
	c) One astronaut returns on earth after one year of interstellar travelling, having moved with		
		velocity half of the speed of light. How much younger he will appear after this journey?	[3]

<u>Group – D</u>

7. a) Two similar coherent point sources S_1 and S_2 are separated by a distance 'd' and the interference pattern is observed on a screen kept at a distance 'D' from S1 along the line joining the sources as shown in fig:

		i) Can you guess the shape of the fringe?	[1]
		ii) Find the distance x of the n th bright fringe from the point O.	[4]
	b)	Show that the dark and bright fringes produced in Young's experiment are equally spaced.	[5]
8.	a)	A biprism of obtuse angle 176° is made of glass of refractive index 1.5. A slit illuminated by a monochromatic light is placed 20 cm behind the biprism and the width of the interference fringes formed on a screen 80 cm in front of the biprism is found to be 0.0325 mm. Find the	
		wavelength of light.	[5]
	b)	What is Fermat's principle?	[1]
	c)	How laws of refraction is proved by Fermat's principle?	[2]

[2]

- c) How laws of refraction is proved by Fermat's principle?
- d) How achromatic doublet reduce chromatic aberrations.

- × -